Journal of Organometallic Chemistry, 290 (1985) 125-131 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

CATIONIC PALLADIUM(II) COMPLEXES INVOLVING UNPRECEDENTED O-COORDINATION OF ACETYLMETHYLENETRIPHENYLPHOSPHORANE

R. USÓN, J. FORNIÉS, R. NAVARRO, P. ESPINET and C. MENDÍVIL

Department of Inorganic Chemistry, University of Zaragoza, 50009 Zaragoza (Spain) (Received January 30th, 1985)

Summary

Cationic pentafluorophenyl palladium(II) complexes of the type $[Pd(C_6F_5)-L_2(APPY)]ClO_4$ (L = PPh₃, PBu₃ⁿ; L₂ = bipy and APPY = Ph₃PCHCOCH₃, acetylmethylenetriphenylphosphorane) have been prepared by addition of APPY to the perchlorato complexes $[Pd(OClO_3)(C_6F_5)L_2]$; the APPY ligand is *O*-coordinated, which is unprecedented in keto-stabilized ylide complexes of palladium.

The neutral complex $Pd(C_6F_5)(Cl)(tht)(APPY)$ has been made by addition of APPY to the binuclear complex $Pd_2(\mu-Cl)_2(C_6F_5)_2(tht)_2$ (tht = tetrahydro-thiophene); in which the APPY ligand shows the normal C-coordination.

Introduction

In phosphorus ylides, $R^{3}P^{+}-C(R^{1})(R^{2})$ [1,2], the negative charge on the ylidic carbon may be delocalized over suitable substituents. For $R^{1} = acetyl$ (C) and $R^{2} = H$, the stabilization of the phosphorus ylide produces a decrease in

 $\mathbf{R}^{2} = \mathbf{H}$, the stabilization of the phosphorus yilde produces a decrease in nucleophilicity and the compound is stable in the atmosphere.

The reaction of a keto-stabilized phophorus ylide (Y) with $PdCl_2$, $PdCl_2L_2$ (L = labile ligand) or $[Pd(\mu-Cl)ClL]_2$ leads to formation of neutral ylide complexes [3-7]. Alternatively, onium ylide halopalladate salts can be converted into neutral ylide complexes by HX abstraction with base [8]. Although numerous neutral complexes of Pd^{II} containing a keto-stabilized phosphorus ylide have been reported, there is to our knowledge only one report [9] of cationic complexes of Pd^{II} , namely $[Pd(C_5H_5)PPh_3(Y)]ClO_4$ (Y = $PPh_3CHCOCH_3$, $PPh_3CHCOPh$), which contain this type of unidentate ylide as a ligand. All the previously reported CO-stabilized Pd compounds are σ -C(ylidic)-Pd-bonded.

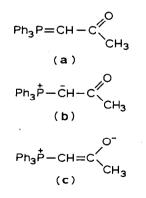
We describe below some neutral or cationic pentafluorophenyl complexes of Pd containing APPY. IR, ¹H and ³¹P NMR studies of the complexes show that there is O-coordination of the APPY ligand in the cationic complexes. This mode of coordination of keto-stabilized ylides is unprecedented in palladium chemistry.

TABLE 1

Complex	Found (calcd.)(%)			Λ_M	M.p.
	C	Н	N	$(ohm^{-1}cm^2 mol^{-1})$	(°C)
$\overline{\left[\mathrm{Pd}(\mathrm{C}_{6}\mathrm{F}_{5})(\mathrm{PPh}_{3})_{2}(\mathrm{APPY})\right]\mathrm{ClO}_{4}}$	62.00	4.57		140	198 (decomp.)
(I)	(62.23)	(4.06)			
$[Pd(C_6F_5)(PBu_3^n)_2(APPY)]ClO_4$	55.85	6.94		131	128
(II)	(55.89)	(6.70)			
$ [Pd(C_6F_5)(bipy)(APPY)]ClO_4 (III) $	52.71	3.30	3.37	138	179
	(52.45)	(3.21)	(3.30)		
[Pd(Cl)(C ₆ F ₅)(tht)(APPY)]	52.05	3.99		0.8	160
(IV)	(52.05)	(3.80)			

ANALYSES, CONDUCTIVITIES (IN ACETONE), AND MELTING POINTS OF THE COMPLEXES

Results and discussion


The reaction between benzene solutions of $[Pd(OClO_3)(C_6F_5)L_2]$ (L = PPh₃ or PBu₃ⁿ, L₂ = bipy) and acetylmethylenetriphenylphosphorane (APPY) leads to the formation of cationic complexes $[Pd(C_6F_5)L_2(APPY)]ClO_4$, according to eq. 1: $[Pd(OClO_3)(C_6F_5)L_2] + APPY \rightarrow [Pd(C_6F_5)L_2(APPY)]ClO_4$ (1)

 $(L = PPh_3 (I); L = PBu_3^n (II); L_2 = bipy (III))$

On the other hand, APPY cleaves the chloro bridges in $[Pd(\mu-Cl)(C_6F_5)(tht)]_2$ (tht = tetrahydrothiophene) to give the neutral complex $[Pd(Cl)(C_6F_5)(tht)(APPY)]$, according to eq. 2:

$$\begin{bmatrix} Pd(\mu-Cl)(C_6F_5)(tht) \end{bmatrix}_2 + 2 \text{ APPY} \rightarrow 2 \begin{bmatrix} Pd(Cl)(C_6F_5)(tht)(APPY) \end{bmatrix}$$
(2)
(IV)

The analyses, conductivities, and melting points of the new complexes are listed in Table 1. The infrared spectral data are summarized in Table 2. The ¹H NMR and ³¹P NMR data are listed in Table 3.

Acetylmethylenetriphenylphosphorane (APPY)

TABLE 2 RELEVANT IR FREQUENCIES (cm⁻¹)

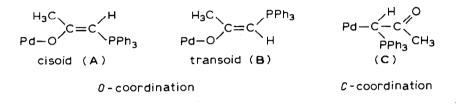
	ν(C=O)	$\Delta \nu$ (C=O) ^a	
APPY	1540		
[Ph ₃ PCH ₂ COCH ₃]Cl	1700	+ 160	
I	1515	-25	
11	1518	- 22	
III	1520	- 20	
IV	1655	+115	

^{*a*} $\Delta \nu = \nu$ (compound) – ν (free ylide).

TABLE 3

¹H NMR^{*a*} AND ³¹P (¹H) NMR^{*b*} DATA

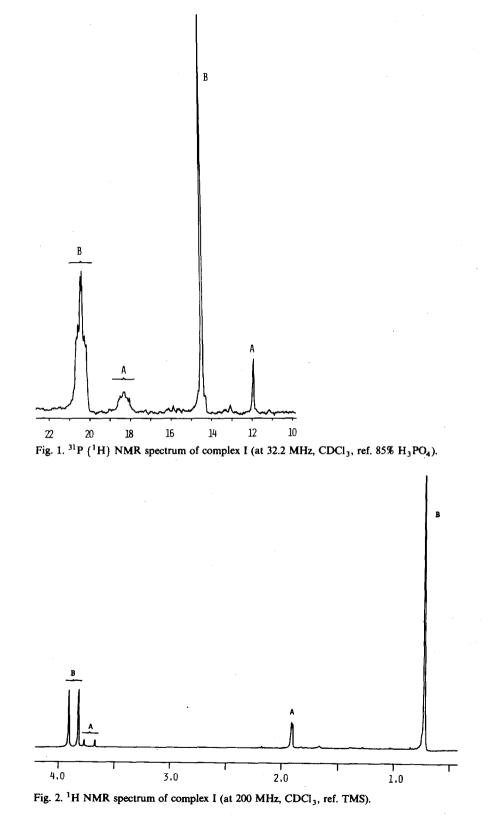
	δ(CH)	$^{2}J(\mathrm{PH})$	δ(CH ₃)	⁴ <i>J</i> (PH)	PPh ₃ (ylide)	PR ₃
APPY [21,22]	3.69(d)	27.0	2.07(d)	1.8	15.86(s)	
IA	3.72(d)	19.2	1.91(d)	1.7	11.94(s)	18.40(m)
В	3.86(d)	17.6	0.73(s)		14.52(s)	20.50(m)
II A	4.56(d)	20.7	2.58(d)	1.2	9.64(s)	6.44(m)
В	5.05(d)	16.8	1.75(s)		10.33(s)	6.88(m)
III A	4.45(d)	22.8	2.45(d)	1.2	13.73(s)	
IV .	5.71(s)		2.69(s)		30.43(s)	


^a In CDCl₃, values in ppm relative to internal TMS, J values in Hz. ^b In CDCl₃, values relative to external 85% H₃PO₄.

Keto-stabilized ylides can coordinate to a metal centre through either the ylidic carbon atom or the oxygen atom. From the resonance forms for the free ylide APPY (a-c) it can be expected that oxygen-bonding (where form c is a major contribution) should cause a decrease in the ν (C=O) frequency relative to that of the free ylide, whilst coordination through the nucleophilic methine carbon should lead to a high-frequency shift as a consequence of the increased contribution of form **b**. Hence, the carbonyl stretching frequency may be a convenient indicator of the type of coordination of the ylide to the metal.

All the keto-stabilized ylide complexes of Pd^{II} described in the literature show an IR band $\nu(C=O)$ in the range 1700–1600 cm⁻¹ corresponding to a C-coordination of the ylide ligand ($\Delta\nu$ positive; $\Delta\nu = \nu(CO)$ (complex) – $\nu(CO)$ (ylide)), and in the case of PdCl₂(Me₂SCHCOPh)₂ [10] and PdCl₂(PPh₂CH₂CH₂PPh₂CHCOPh) [11] this has been confirmed by X-ray crystallography.

Surprisingly, our cationic complexes I-III have the ν (C=O) bands at values at frequencies as low as 1520-1515 cm⁻¹ with $\Delta \nu < 0$. The observed range is close to the values of ν (C=O) reported for complexes of the type R₃M(Cl)(Y) [12] (M = Sn, Pb; Y = keto-stabilized ylide), which are in the range 1510-1465 cm⁻¹ ($\Delta \nu < 0$); in those complexes the ylide ligand was considered to be attached through the oxygen atom, and this was confirmed by the X-ray crystal structure of [SnMe₃Cl(APPY)] [13]. The IR data of our complexes I-III point clearly to O-coordination of the ylide ligand, and this is confirmed by the NMR data (see below). Such coordination is unprecedented in palladium chemistry. In contrast, the neutral complex IV has ν (C=O) at 1655 cm⁻¹, within the range of the usual C-coordinated keto-stabilized ylide complexes.


In our complexes $[Pd(C_6F_5)L_2(APPY)]^+$ there are several possibilities for isomerism: Firstly, there can be a *cis* or *trans* arrangement of the L ligands around the Pd center; the ³¹P NMR spectra (discussed later) prove that for $L = PPh_3$, PBuⁿ₃, only the *trans*-isomer is formed, whereas for $L_2 =$ bipy the complex is necessarily the *cis*-isomer. Secondly there can be *O*- or *C*-coordination of the ylide ligand, as discussed above. Finally, if the APPY ligand is *O*-coordinated, the important contribution of the canonical form c hinders the internal rotation around the C=C bond so that two conformational isomers, the cisoid (A) and the transoid (B), can exist; if the APPY ligand is attached to the Pd atom through the C-ylidic atom (C) then two enantiomers, *R* and *S*, can be formed but these are indistinguishable in non-chiral solvents.

The ¹H and ³¹P {¹H} NMR spectra reveal the presence of two conformational isomers for both complex I and complex II, thus confirming the O-coordination of the ylide ligand. The relative intensity of the signals can be used to evaluate the cisoid to transoid ratio. Thus, the ³¹P {¹H} NMR spectrum of complex I (Fig. 1) consists of two singlets at 11.9 and 14.5 ppm in approximately 1/4 ratio, assigned to the ylidic phosphorus, and two multiplets (arising from coupling to the fluorine atoms in C_6F_5) at 18.4 and 20.5 ppm in 2/8 ratio, assigned to the phosphine ligands. This means that the solution consists of a 1/4 mixture of the cisoid (A) and transoid (B) isomers of trans- $[Pd(C_5F_5)(PPh_1)_2(APPY)]^+$ and rules out the presence of the cis-complex, in which two inequivalent phosphines would give rise to pairs of signals of equal intensity, which are not observed. In the ¹H NMR spectrum (Fig. 2) the same 1/4 mixture is observed. The cisoid isomer displays a doublet at 3.72 ppm $({}^{2}J(P-H)$ 19.2 Hz) for the methine proton and a doublet at 1.91 ppm $({}^{4}J(P-H)$ 1.7 Hz) for the CH_3 protons. The transoid isomer shows a doublet at 3.86 ppm $(^{2}J(P-H)$ 17.6 Hz) and a singlet at 0.73 ppm. The identification of the minor component as the cisoid isomer is based on the expectation of a higher ${}^{4}J(P-H)$ coupling for this isomer than for the transoid one; this coupling was not, in fact, observed in the transoid isomer.

The detection of the cisoid and the transoid isomers is a conclusive proof of the proposed O-coordination of the ylide ligand. Moreover, the ${}^{2}J(P-H)$ values observed (17–20 Hz) are much larger than the small coupling constants (< 6 Hz) observed for C-coordinated keto-stabilized ylide complexes of palladium [3,4,9], and very close to the value (24 Hz) observed for [W(CO)₅(PPh₃CHCOPh)] [14], for which the presence of a band due to ν (C=O) at 1513 cm⁻¹ again indicates O-coordination.

In the same way complex II is found to be an almost 1:1 mixture of the cisoid and the transoid isomer. For complex III signals are observed for only one isomer, but the O-coordination of the ylide in this complex is confirmed by the high value of ${}^{2}J(P-H)$ (22.8 Hz); the observation of ${}^{4}J(P-H)$ coupling (1.2 Hz) suggests that it is the cisoid isomer.

For the neutral complex [PdCl(C_6F_5)(tht)(APPY)] (IV) the IR spectrum suggests C-coordination of the ylide ligand. The ³¹P {¹H} NMR spectrum shows only one singlet at significantly lower field than the preceding complexes, thus ruling out the presence of coordination of conformational isomers. More interestingly, the ¹H NMR spectrum consists of two singlets, in (1/3 ratio, related respectively to the methine and the CH₃ protons; thus ²J(P-H) coupling is insignificant, which represents a difference from complexes I and II and a similarity to many C-coordinated keto-stabilized ylide complexes of palladium [8].

All the cationic complex exhibit IR absorption at ca. 1100vs,br and 620s cm⁻¹, characteristic [15] of the ClO_4^- anion (T_d) , along with absorptions due to the C_6F_5 group (ca. 1500s, 950s cm⁻¹) [16] and to the neutral ligands. The complexes behave in acetone as 1:1 electrolytes [17], except for complex IV which is non-conducting.

Experimental

C, H and N analyses were carried out on a Perkin-Elmer 240 microanalyzer. Melting points were determined with a Buchi apparatus and are uncorrected. Conductivities were measured in approx. 5×10^{-4} M solutions with a Philips PW 9501/01 conductimeter. The IR spectra were recorded (in the 4000-200 cm⁻¹ range) on a Perkin-Elmer 577 spectrophotometer using Nujol mulls between polyethylene sheets. NMR spectra were recorded with a Varian XL-200 spectrometer in CDCl₃ solution.

Standard methods were used to prepare the compounds: $CH_3COCHPPh_3$ (APPY) [18], $[Pd(\mu-Cl)(C_6F_5)(tht)]_2$ [19] and $[Pd(OClO_3)(C_6F_5)L_2]$ [20] (L = PPh₃, PBu₃ⁿ; L₂ = bipy).

$[Pd(C_6F_5)L_2(APPY)]ClO_4 (L = PPh_3 (I), L = PBu_3^n (II); L_2 = bipy (III))$

A solution of APPY (0.11 g, 0.36 mmol) in 10 ml of benzene was added to a solution of $[Pd(OClO_3)(C_6F_5)L_2]$ (L = PPh₃ or PBu₃ⁿ L₂ = bipy) (0.33 mmol) in 20 ml of benzene. For L = PPh₃, a white precipitate was formed almost instantaneously. For L = PBu₃ⁿ, the solution was stirred for 4 h at room temperature, then concentrated to 10 ml to give white crystals. In the case of L₂ = bipy, a yellow oil separated spontaneously, and this was recrystallised from CHCl₃/C₆H₆ to give a pale yellow solid.

The solids were filtered off, washed with benzene, and recrystallised from $CHCl_3/C_6H_6$. Yields: I: 99% (0.417 g), II: 78% (0.298 g), III: 75% (0.225 g).

$[PdCl(C_6F_5)(tht)(APPY)]$ (IV)

A solution of APPY (0.400 g, 1.25 mmol) in 20 ml of acetone was added to a solution of $[Pd(\mu-Cl)(C_6F_5)(tht)]_2$ (0.400 g, 0.50 mmol) in 20 ml of acetone. The solution was stirred for 48 h (at room temperature) and evaporated to dryness; the residual oil was stirred with 2×10 ml of hexane to give a pale yellow solid, which was filtered off, washed with 2×5 ml of EtOH, and dried. Yield: 70% (0.543 g).

References

- 1 A.W. Johnson, Ylid Chemistry, Academic Press, New York, 1966.
- 2 H. Schmidbaur, Acc. Chem. Res., 8 (1975) 62.
- 3 E.T. Weleski Jr., J.L. Silver, M.D. Jansson and J.L. Burmeister, J. Organomet. Chem., 102 (1975) 365.

- 4 P. Bravo, G. Fronza and C. Ticcozi, J. Organomet. Chem., 111 (1976) 361.
- 5 P.A. Arnup and M.C. Baird, Inorg. Nucl. Chem. Lett., 5 (1969) 65.
- 6 H. Koezuka, G. Matsubayashi and T. Tanaka, Inorg. Chem., 15 (1976) 417.
- 7 Y. Oosawa, H. Urabe, T. Saito and Y. Sasaki, J. Organomet. Chem., 122 (1976) 113.
- 8 H. Nishiyama, K. Itoh and Y. Ishii, J. Organomet. Chem., 87 (1975) 129.
- 9 M. Onishi, Y. Ohama, K. Hiraki and H. Shintam, Polyhedron, 1 (1982) 539.
- 10 P. Bravo, G. Fronza, C. Ticozzi and G. Gandiano, J. Organomet. Chem., 74 (1974) 143.
- 11 H. Takahashi, Y. Oosawa, A. Kobayashi, T. Saito and Y. Sasaki, Bull. Chem. Soc. Jap., 50 (1977) 1771.
- 12 J. Buckle and P.G. Harrison, J. Organomet. Chem., 49 (1973) C18.
- 13 J. Buckle, P.G. Harrison, T.J. King and J.A. Richards, J. Chem. Soc., Chem. Commun., (1972) 1104.
- 14 T. Kawafune and C. Matsubayashi, Inorg. Chim. Acta, 70 (1983) 1.
- 15 B.J. Hathaway and A.E. Underhill, J. Chem. Soc., (1961) 3091.
- 16 D.A. Long and D. Steele, Spectrochim. Acta, 19 (1965) 1955.
- 17 W.J. Geary, Coord. Chem. Rev., 7 (1971) 81.
- 18 F. Ramirez and S. Dershowitz, J. Am. Chem. Soc., 22 (1957) 41.
- 19 R. Usón, J. Forniés, R. Navarro and M.P. García, Inorg. Chim. Acta, 33 (1979) 69.
- 20 R. Usón, J. Forniés, P. Espinet and R. Navarro, Inorg. Chim. Acta, 82 (1984) 215.
- 21 I.F. Wilson and J.C. Tebby, Tetrahedron Lett., (1970) 3769.
- 22 H.I. Zelinger, J.P. Snyder and H.J. Bestmann, Tetrahedron Lett, (1970) 3313.